

Wagtail Autocomplete

[image: Animation of autocomplete multiple selection in action]
Wagtail Autocomplete provides an edit handler that allows an editor to
select related objects via a quick autocompleted searching interface.

Contents:

	Getting Started
	Installation

	Setup

	Basic Usage
	A Quick Example

	AutocompletePanel

	Multiple Selection With Clusterable Models

	Using Other Models
	Selecting Snippets

	Customization
	“Create New” Behavior

	Custom Search Field

	Custom Label Display

	Custom QuerySet Filter Function

	Contributing
	Code Style

	Frontend Development

	Compiling the documentation

	Running the test suite

	Changelog
	0.10 Release

	0.9 Release

	0.8.1 Release

	0.7 Release

	0.6.3 Release

	0.6 Release

	0.5 Release

	0.4 Release

	0.3.1 Release

	0.3 Release

Getting Started

Installation

Install with pip:

pip install wagtail-autocomplete

Setup

Add 'wagtailautocomplete' to your project’s INSTALLED_APPS.

Add Wagtail Autocomplete’s URL patterns to your project’s URL config, usually in urls.py. This should come before your wagtail_urls and if you are using the suggested pattern r'^admin/autocomplete/' it must also come before your admin urls:

from django.conf.urls import include, url

from wagtail.wagtailcore import urls as wagtail_urls

from wagtailautocomplete.urls.admin import urlpatterns as autocomplete_admin_urls

urlpatterns = [
 # ...
 url(r'^admin/autocomplete/', include(autocomplete_admin_urls)),
 url(r'^admin/', include(wagtailadmin_urls)),
 # ...
 url(r'', include(wagtail_urls)),
]

This makes available custom API endpoints that provide the search and creation behavior for the widget.

Continue to Basic Usage to learn how to use the AutocompletePanel on a field in the admin.

Basic Usage

A Quick Example

We have a BlogPage that lets the editor select an AuthorPage page.

class AuthorPage(Page):
 pass

class BlogPage(Page):
 author = models.ForeignKey(
 'app_label.AuthorPage',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
)

The AuthorPage would traditionally be selected with a
wagtail.wagtailadmin.edit_handlers.PageChooserPanel,
like the following.

content_panels = Page.content_panels + [
 PageChooserPanel('author', page_type='app_label.AuthorPage'),
]

Instead we can use AutocompletePanel.

content_panels = Page.content_panels + [
 AutocompletePanel('author'),
]

[image: Animation of autocomplete selection in action]

AutocompletePanel

	
class wagtailautocomplete.edit_handlers.AutocompletePanel(field_name, target_model='wagtailcore.Page')

	AutocompletePanel takes one required argument, the field name.
Optionally, you can pass a single target_model which will limit the
objects an editor can select to that model — this argument can be a reference
to a model class or a model string in app_label.ModelName syntax.

Note

Unlike wagtail.wagtailadmin.edit_handlers.PageChooserPanel,
AutocompletePanel does not support receiving target_model as a list.

Note

AutocompletePanel does not support receiving the can_choose_root
argument that wagtail.wagtailadmin.edit_handlers.PageChooserPanel
does.

Multiple Selection With Clusterable Models

AutocompletePanel can also be used with a ParentalManyToManyField to
provide a multiple selection widget. For example:

Note

Use content_panels when the model is inherited from Page. If it is
inherited from models.Model or ClusterableModel, then we need to
use panels instead of content_panels.

from django.db import models
from wagtail.core.models import Page
from modelcluster.models import ClusterableModel
from modelcluster.fields import ParentalManyToManyField

from wagtailautocomplete.edit_handlers import AutocompletePanel

class Book(ClusterableModel):
 title = models.CharField(max_length=255)

class AuthorPage(Page):
 books = ParentalManyToManyField(
 Book,
 null=True,
 related_name='authors'
)

 content_panels = Page.content_panels + [
 AutocompletePanel('books', target_model=Book)
]

[image: Animation of autocomplete multiple selection in action]

Note

This above screen capture also shows the availability of Wagtail
Autocomplete’s “Create New” behavior. To learn more, see
Customization.

Using Other Models

AutocompletePanel works with models other than
wagtail.wagtailcore.Page and subclasses of it.

Selecting Snippets

For example, we have a Django model Link that we have registered as a snippet.
We also have a BlogPage model that would traditionally use a
wagtail.wagtailsnippets.edit_handlers.SnippetChooserPanel

from django.db import models

from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailcore.models import Page
from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel
from wagtail.wagtailsnippets.models import register_snippet

@register_snippet
class Link(models.Model):
 title = models.CharField(max_length=255)
 url = models.URLField()

 panels = [
 FieldPanel('title'),
 FieldPanel('url'),
]

class BlogPage(Page):
 external_link = models.ForeignKey(
 'app_label.Link',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
)

 content_panels = [
 SnippetChooserPanel('external_link'),
]

We can replace the
wagtail.wagtailsnippets.edit_handlers.SnippetChooserPanel
usage with
AutocompletePanel.

panels = [
 AutocompletePanel('external_link'),
]

Note

Wagtail Autocomplete assumes by default that models have a title field.
To you autocomplete with target models that don’t have a title field,
see Customization for instructions on setting a
custom label and search field.

Customization

Wagtail Autocomplete provides the ability to customize the behavior of AutocompletePanel.

“Create New” Behavior

Sometimes you want users to not only be able to select pages or objects, but create new ones on the fly without leaving the object that they’re currently editing. This can be particularly useful for tag-like objects, where you want to be able to add a tag with a particular title, even if that tag doesn’t already exist in the database.

You can enable this type of behavior by defining an autocomplete_create class method on your model. This method should accept a string value and return a new saved model instance:

from django.db import models
from wagtailautocomplete.edit_handlers import AutocompletePanel

class MyModel(models.Model):
 title = models.CharField(max_length=255)

 @classmethod
 def autocomplete_create(kls: type, value: str):
 return kls.objects.create(title=value)

Custom Search Field

By default, the autocomplete widget will match input against the title field on your model. If you’re using a model that doesn’t have a title attribute, or you just want to search using a different field, you can customize which field it matches against by defining an autocomplete_search_field property on your model:

from django.db import models
from wagtailautocomplete.edit_handlers import AutocompletePanel

class MyModel(models.Model):
 my_special_field = models.CharField(max_length=255)

 autocomplete_search_field = 'my_special_field'

Warning

You will also need to define an autocomplete_label function, unless your model has a title attribute. See the section on Custom Label Display for more information.

Note

Internally Wagtail Autocomplete uses an icontains lookup to search for partial text matches. So, in the example above, if a user enters 'part' into an autocomplete field, Wagtail Autocomplete will perform the following query to find matches:

MyModel.objects.filter(my_special_field__icontains='part')

Additionally, this means that autocomplete_search_field must be a model field and cannot be an arbitrary property or method. There is also the possibility to define a custom filter function, described in Custom QuerySet Filter Function.

Custom Label Display

By default, the autocomplete widget will display the title field from a model. You can change this behavior by defining an autocomplete_label method on your model:

from django.db import models
from wagtailautocomplete.edit_handlers import AutocompletePanel

class MyModel(models.Model):
 my_special_field = models.CharField(max_length=255)

 def autocomplete_label(self):
 return self.my_special_field

Custom QuerySet Filter Function

By default, the autocomplete widget uses an icontains lookup to search for matching items of the given model. To change that behavior a custom filter function can be defined, that will be called instead of the default filtering. The function needs to return a QuerySet of the expected model.

from django.db import models
from django.db.models import QuerySet
from wagtailautocomplete.edit_handlers import AutocompletePanel

class MyModel(models.Model):
 my_special_field = models.CharField(max_length=255)

 def autocomplete_label(self):
 return self.my_special_field

 @staticmethod
 def autocomplete_custom_queryset_filter(search_term: str) -> QuerySet:
 field_name='my_special_field'
 filter_kwargs = dict()
 filter_kwargs[field_name + '__contains'] = search_term
 return MyModel.objects.filter(**filter_kwargs)

Contributing

Wagtail Autocomplete is an open-source project and we welcome contributions! The eventual goal is to merge Wagtail Autocomplete into Wagtail core, so contributions should be made with that in mind.

We accept both issue reports and code contributions through our GitHub repository [https://github.com/wagtail/wagtail-autocomplete/].

Code Style

This repo follows Wagtail’s guidelines [https://docs.wagtail.io/en/stable/contributing/index.html].
Clone wagtail/wagtail in a separate folder and run linters with their configuration.

gem install scss_lint
npm run lint:css -- --config /path/to/wagtail/.scss-lint.yml
npm run lint:js -- --config /path/to/wagtail/.eslintrc

flake8 --config /path/to/wagtail/tox.ini wagtailautocomplete
isort --check-only --diff --recursive wagtailautocomplete

Frontend Development

Wagtail Autocomplete uses Webpack <https://webpack.js.org/> to compile our javascript. To have Webpack watch for changes as you develop, first ensure that you have the node requirements installed:

npm install

then run:

npm run start

You can end the watch process with ctrl-C. Do commit compiled Javascript and CSS assets to the repo. Before committing, run:

npm run build

to create a production-ready build of assets.

Compiling the documentation

The Wagtail Autocomplete documentation is built with Sphinx. To install Sphinx and compile the documentation, run:

cd /path/to/wagtail-autocomplete
pip install -e .[docs]
cd docs
make html

The compiled documentation will now be in docs/_build/html. Open this directory in a web browser to see it. Python comes with a module that makes it very easy to preview static files in a web browser. To start this simple server, run the following commands:

from insde of /path/to/wagtail-autocomplete/docs
cd _build/html/
python -m http.server 8080

Now you can open <http://localhost:8080/> in your web browser to see the compiled documentation.

Running the test suite

This project uses pytest and tox to run its test suite. To install pytest and run the test suite, run:

cd /path/to/wagtail-autocomplete
pip install -e .[test]
pytest

To run the test suite against all dependency permutations, ensure that you have all the necessary Python interpreters installed and run:

tox

If you make changes to test models, you must regenerate the migrations in wagtailautocomplete/tests/testapp/migrations/. This can be a sort of tricky process and is left as an excercise to the reader until I’m able to standardize a mechanism for doing so. Since test models are ephemeral it is OK, and even preferable, to regenerate migrations from scratch for each change.

Changelog

0.10 Release

	Change the search view to use the HTTP POST method, which can prevent the request URI from becoming too long.

	New feature: add the possibility of a custom filter function.

0.9 Release

	Add Wagtail 3.x compatibility

0.8.1 Release

	Change in behavior: the autocomplete endpoint will return a 404 response if no objects are found.

	Update Javascript dependencies to remove security vulnerabilities.

0.7 Release

	Breaking change: Drop deprecated page_type and is_single arguments from AutocompletePanel.

	Update the panel and widget codes based on panels of wagtail.admin.edit_handlers – mainly PageChooserPanel.

	Update Javascript dependencies to remove security vulnerabilities.

	Update use of deprecated django.conf.urls.url function.

0.6.3 Release

	Remove native browser autocomplete form field.

0.6 Release

	Add Wagtail 2.8 support

0.5 Release

	Add Django 3.0 support

	Remove Wagtail 1.x support (Wagtail 2.3 or later now required)

	Documentation fixes

0.4 Release

	Deprecate is_single option, make target_model optional. AutocompletePanel will now automatically derive these attributes from the field. (#48 [https://github.com/wagtail/wagtail-autocomplete/pull/48])

	Remove compatibility for all Python 2.x and Wagtail 1.x versions (#53 [https://github.com/wagtail/wagtail-autocomplete/pull/53])

0.3.1 Release

	Correct documentation for installing tests (#44 [https://github.com/wagtail/wagtail-autocomplete/pull/44])

	Correct errors raised by endpoints (#45 [https://github.com/wagtail/wagtail-autocomplete/pull/45])

0.3 Release

	Various improvements to Tox testing and CI setup.

	Various improvements to Webpack compilation.

	Replace page_type keyword argument with more accurate target_model keyword argument. The old argument still works, but is deprecated.

	Enable autocomplete panel to run its javascript function when it is added to the page dynamically. This allows autocomplete panels to function inside of inline panels.

	Change references from model IDs to model PKs to allow panel compatibility with custom and non-integer primary keys.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wagtailautocomplete	

 	
 	
 wagtailautocomplete.edit_handlers	

Index

 A
 | W

A

 	
 	AutocompletePanel (class in wagtailautocomplete.edit_handlers)

W

 	
 	wagtailautocomplete.edit_handlers (module)

 _static/autocomplete-fk-demo.gif

_static/autocomplete-m2m-demo.gif
Nothing selected.

_images/autocomplete-m2m-demo.gif
Nothing selected.

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/autocomplete-fk-demo.gif

nav.xhtml

 Table of Contents

 		
 Wagtail Autocomplete

 		
 Getting Started

 		
 Installation

 		
 Setup

 		
 Basic Usage

 		
 A Quick Example

 		
 AutocompletePanel

 		
 Multiple Selection With Clusterable Models

 		
 Using Other Models

 		
 Selecting Snippets

 		
 Customization

 		
 “Create New” Behavior

 		
 Custom Search Field

 		
 Custom Label Display

 		
 Custom QuerySet Filter Function

 		
 Contributing

 		
 Code Style

 		
 Frontend Development

 		
 Compiling the documentation

 		
 Running the test suite

 		
 Changelog

 		
 0.10 Release

 		
 0.9 Release

 		
 0.8.1 Release

 		
 0.7 Release

 		
 0.6.3 Release

 		
 0.6 Release

 		
 0.5 Release

 		
 0.4 Release

 		
 0.3.1 Release

 		
 0.3 Release

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

